WordPress шаблоны скачать; прочитайте про создание сайта самостоятельно; изучите русский WordPress на WordPress API.

В Одессе от удара током погиб мужчина, находившийся на крыше поезда

Одесса. 9 апреля. УНИАН. В Одессе от удара током погиб мужчина, находившийся на крыше поезда.

Как сообщили УНИАН в пресс-службе Главного управления ГСЧС в Одесской области, 8 апреля в службу спасения «101» поступила информация от дежурного «скорой помощи» о том, что по ул. Сортировочная, 1, на крыше грузового поезда находится человек.

Прибывшие сотрудники ГСЧС сняли с Читать далее »

Фотофакт. Игрок минского «Динамо» признан лучшим футболистом Сьерра-Леоне

 
Защитник Футбольного клуба «Динамо-Минск» Умару Бангура признан лучшим футболистом своей страны.

Умару Бангура-лучший футболист Сьерра-Леоне по версии гуманитарной организации AWOL continental Europe.
Поздравляем! pic.twitter.com/pEGibDfpxo

— ФК Динамо Минск (@FC_Dinamo_Minsk) 9 апреля 2016 г. Читать далее »

Ученым удалось запутать три «закрученных» в трех измерениях фотона света

 |  | 10 марта 2016 | Новости науки и техники
Ученым удалось запутать три «закрученных» в трех измерениях фотона света

Исследователи из отдела Квантовой оптики и информации (Quantum Optics and Quantum Information) Венского университета и Автономного университета Барселоны (Universitat Autonoma de Barcelona) Читать далее »

Самый черный в мире материал становится «еще чернее»

 |  | 10 марта 2016 | Новости науки и техники
Самый черный в мире материал становится «еще чернее»

В свое время мы рассказывали о чудо-материале под названием Vantablack, изготовленном в 2014 году компанией Surrey NanoSystems, который способен абсорбировать 99.96 процентов падающего на его Читать далее »

Новый японский ускоритель SuperKEKB произвел первые столкновения частиц

 |  | 8 марта 2016 | Новости науки и техники
Новый японский ускоритель SuperKEKB произвел первые столкновения частиц

Новый японский ускоритель частиц SuperKEKB, который является первым ускорителем, введенным в строй после Большого Адронного Коллайдера (БАК), произвел первые столкновения лучей частиц, позитронов и электронов, разогнанных почти до скорости света и движущихся по 10-метровой трубе кольца ускорителя, диаметр которого равен 3 километрам. На сооружение этого научного инструмента было потрачено больше 100 миллионов долларов, а его строительство велось, начиная с 2010 года. Изучение частиц, произведенных в результате столкновений, поможет ученым-физикам открыть некоторые фундаментальные тайны Вселенной, связанные с антиматерией, и изучить те области физики, которые лежат за пределами Стандартной модели физики элементарных частиц

Создатели ускорителя SuperKEKB утверждают, что возможности нового ускорителя находятся на так называемой границе интенсивности, обеспечивая в 40 раз больший темп столкновений частиц, нежели его предшественник, ускоритель KEKB. В следующем году новый ускоритель будет ускорять два луча частиц одновременно и сжимать их до диаметра, гораздо меньшего, нежели чем это способен сделать любой другой ускоритель на Земле. Столкновения таких «концентрированных» лучей позволит получить большое количество вторичных B-мезонов и тау-лептонов, тяжелых частиц, изучение которых уходит в пока неизведанные еще области физики.

Японским ученым, которые провели годы, проектируя собственно ускоритель и датчики его экспериментов, предстоит собрать огромный набор научных данных. А затем им потребуется провести еще больше времени, тщательно «просеивая» эти данные и выискивая среди них «золотые крупинки» научных открытий.

Новый ускоритель SuperKEKB располагается рядом со старым ускорителем KEK в районе Цукуба. Основным инструментом нового ускорителя является датчик Belle II, в рабочей области которого производится столкновение лучей электронов и позитронов. Вес датчика составляет 1 миллион килограмм (1000 тонн) и его размеры равны приблизительно 8 метрам по всем трем направлениям.

Разработкой этого датчика занималось более 600 ученых из 88 научных учреждений 23 стран четырех континентов. «Столь глобальное сотрудничество необходимо для того, чтобы произвести попытку проникновения в новые области физики элементарных частиц» — рассказывает Джеймс Сигрист (James Siegrist), — «Теперь ученые этих же стран сосредоточены на создании системы, которая позволит работать с собранными научными данными физикам со всего мира».

И в заключение следует отметить, что новый японский ускоритель не является прямым конкурентом Большому Адронному Коллайдеру, который возобновил свою работу в июне прошлого года после двухлетнего перерыва. Эти два мощнейших научных инструмента взаимно дополнят возможности друг друга, что наверняка приведет к новым интересным и важным открытиям.

Новый гибридный полимер может стать основой самовосстанавливающихся материалов, искусственных мускулов и многого другого

Сейчас мы буквально живем в окружении пластмасс самых различных типов. Но, несмотря на постоянное развитие новых технологий, все основные полимерные материалы уже на протяжении почти столетия остаются практически неизменными по составу и по их другим свойствам. А недавно, группа исследователей из Северо-Западного университета, возглавляемая Сэмюэлем Стаппом (Samuel Stupp), разработала совершенно новый тип гибридного полимера, который является достаточно необычной комбинацией твердых и мягких материалов. Этот прорыв в области наноинженерии открывает дорогу разработке множества новых технологий, начиная от самовосстанавливающихся материалов до искусственных мускулов.

Процесс формирования гибридного полимера заключается в одновременной «сборке» мономеров, длинных молекул двух различных полимерных материалов. При этом, процесс производится таким образом, что структура одной молекулы «строится» вокруг другой молекулы и наоборот. В результате, молекула одного полимера формируется за счет ковалентных химических связей, а вторая — за счет нековалентных связей. Ковалентные связи весьма сильны и за счет этого в центре формируется своего рода «ядро», поперечное сечение которого напоминает звезду с несколькими лучами. Нековалентные связи менее сильны и при их помощи формируется мягкий полимер, который заполняет промежутки между участками более прочного материала.

«Новый полимер имеет уникальную структуру с наноразмерными «отделениями», которые можно удалять и восстанавливать сколько угодно раз химическим путем» — рассказывает Сэмюэль Стапп, — «В некоторых отделениях содержится твердый полимер, другие заполняются мягким надмолекулярным материалом, который может быстро реагировать на изменения некоторых факторов окружающей среды. Эти реакции позволят производить на основе таких полимеров изделия, обладающие возможностями и функциями, которые свойственны живым организмам».

Надмолекулярная полимеризация действует как своего рода катализатор процесса ковалентной полимеризации, что позволяет получить материал с достаточно высоким значением молекулярной массы. Кроме этого, одновременная полимеризация ковалентных и нековалентных связей позволяет молекулам разных типов сцепляться друг с другом, формируя цилиндрическую полимерную «нить», которая может иметь сколь угодно большую длину.

Необычные свойства нового полимера открывают возможности реализации целого ряда новых технологий. Этот материал может использоваться в качестве средства целевой доставки лекарственных препаратов, которое может хранить в своих отделениях набор из различных препаратов, высвобождая их только в заданных местах. Другие свойства нового полимера позволят создать на его основе новые самовосстанавливающиеся материалы, которые можно будет использовать в качестве защитных покрытий. А добавка к новому полимеру других материалов позволит превратить его в основу искусственных мускулов, сокращающихся под воздействием электричества, света, тепла и других видов энергии.

Новый гибридный полимер может стать основой самовосстанавливающихся материалов, искусственных мускулов и многого другого

Сейчас мы буквально живем в окружении пластмасс самых различных типов. Но, несмотря на постоянное развитие новых технологий, все основные полимерные материалы уже на протяжении почти столетия остаются практически неизменными по составу и по их другим свойствам. А недавно, группа исследователей из Северо-Западного университета, возглавляемая Сэмюэлем Стаппом (Samuel Stupp), разработала совершенно новый тип гибридного полимера, который является достаточно необычной комбинацией твердых и мягких материалов. Этот прорыв в области наноинженерии открывает дорогу разработке множества новых технологий, начиная от самовосстанавливающихся материалов до искусственных мускулов.

Процесс формирования гибридного полимера заключается в одновременной «сборке» мономеров, длинных молекул двух различных полимерных материалов. При этом, процесс производится таким образом, что структура одной молекулы «строится» вокруг другой молекулы и наоборот. В результате, молекула одного полимера формируется за счет ковалентных химических связей, а вторая — за счет нековалентных связей. Ковалентные связи весьма сильны и за счет этого в центре формируется своего рода «ядро», поперечное сечение которого напоминает звезду с несколькими лучами. Нековалентные связи менее сильны и при их помощи формируется мягкий полимер, который заполняет промежутки между участками более прочного материала.

«Новый полимер имеет уникальную структуру с наноразмерными «отделениями», которые можно удалять и восстанавливать сколько угодно раз химическим путем» — рассказывает Сэмюэль Стапп, — «В некоторых отделениях содержится твердый полимер, другие заполняются мягким надмолекулярным материалом, который может быстро реагировать на изменения некоторых факторов окружающей среды. Эти реакции позволят производить на основе таких полимеров изделия, обладающие возможностями и функциями, которые свойственны живым организмам».

Надмолекулярная полимеризация действует как своего рода катализатор процесса ковалентной полимеризации, что позволяет получить материал с достаточно высоким значением молекулярной массы. Кроме этого, одновременная полимеризация ковалентных и нековалентных связей позволяет молекулам разных типов сцепляться друг с другом, формируя цилиндрическую полимерную «нить», которая может иметь сколь угодно большую длину.

Необычные свойства нового полимера открывают возможности реализации целого ряда новых технологий. Этот материал может использоваться в качестве средства целевой доставки лекарственных препаратов, которое может хранить в своих отделениях набор из различных препаратов, высвобождая их только в заданных местах. Другие свойства нового полимера позволят создать на его основе новые самовосстанавливающиеся материалы, которые можно будет использовать в качестве защитных покрытий. А добавка к новому полимеру других материалов позволит превратить его в основу искусственных мускулов, сокращающихся под воздействием электричества, света, тепла и других видов энергии.

В Днепропетровской области возле железнодорожных путей обнаружены две боевые гранаты

Днепропетровск. 7 апреля. УНИАН. В Днепропетровской области неподалеку от Днепродзержинска 6 апреля на расстоянии примерно 2 метра от железнодорожного пути, рядом с остановкой платформы 164 км мастер железнодорожной станции обнаружил две боевые гранаты.

Об этом УНИАН сообщили в Главном управлении ГСЧС в Днепропетровской области.

По прибытии к месту происшествия спасатели и Читать далее »

Белоруссия: Денежные вознаграждения за доносы

В феврале белорусам, помогающим разоблачать взяточников, начали выплачивать денежные вознаграждения. Как рассказали в Генпрокуратуре Белоруссии, почти о половине коррупционных преступлений становится известно по инициативе простых граждан. «Лента.ру» попыталась выяснить, удастся ли республике победить коррупцию, вознаграждая доносчиков.

Подогретая активность Читать далее »

Бог рассудит

На фоне экономического кризиса россияне стали в четыре раза чаще судиться с Русской православной церковью (РПЦ). Об этом свидетельствуют данные картотеки арбитражного суда. Так, если в 2010 году к монастырям и православным приходам было подано всего лишь 54 иска, то в 2015 году их было уже 212. Общее количество судебных тяжб, в которых структуры РПЦ выступают ответчиками, уже перевалило Читать далее »